$119[\mathrm{H}] .-T$. A. Ciriani \& A. L. Frisiani, Tabulation of Solutions of the Cubic Equation $z^{3}+A z-A=0$, IBM Italia and Instituto di Elettrotecnica Università di Genova, Genova, Italy, undated ms. of 10 typewritten pp. + a block diagram +32 pp . of tables, deposited in UMT File.
The equation (1) $x^{3}+a x^{2}+b x+c=0$, under the transformation $y=x+$ $(a / 3)$, becomes (2) $y^{3}+p y+q=0$, where $p=\left(3 b-a^{2}\right) / 3$ and $q=\left(2 a^{3}-\right.$ $9 a b+27 c) / 27$. Setting $z=-p y / q$, (2) becomes (3) $z^{3}+A z-A=0$, where $A=p^{3} / q^{2}$. If z_{1} is a root of (3), the other two roots are given by

$$
\begin{equation*}
z_{2,3}=-\frac{z_{1}}{2} \pm \sqrt{ }\left(-A-\frac{3 z_{1}{ }^{2}}{4}\right) \tag{4}
\end{equation*}
$$

For $A \leqq-6.75$, equation (3) has three real roots; for $A>-6.75$, it has one real and two complex conjugate roots.

The tables give all three roots for $\pm A=0.0001$ (0.0001) 0.01 (0.001) 0.1 (0.005)$0.5(0.01) 1(0.05) 10(0.1) 20(1) 100(5) 500$, to 8 S . No aids to interpolation are tabulated. In the text it is stated that extensive checks were performed (not described) and that the roots were found accurate to 8 S except in the neighborhood of $A=$ -6.75 (accuracy there not specified).

The computations were performed on an IBM 1401, using 12S. First a real root z_{1} was computed by a method of successive approximations which about halved the error at each step. For $A<-6.75$, the other two real roots were obtained from (4). For $A>-6.75$, a first approximation to the complex pair, $C_{0} \pm j D_{0}$, was obtained from (4) and successively improved, using J. A. Ward's downhill method [1], which appears to about halve the error at each stage.

For A outside the range of the table, namely for $A<-500,|A|<0.0001$ and $A>500$, first approximations to $z_{i}, i=1,2,3$, are given in terms of A, with bounds for the relative error that range from $1.6 \cdot 10^{-2}$ down to $7 \cdot 10^{-4}$, together with a function γ, expressed in terms of A, such that a better approximation may be obtained by multiplying the first approximation by $1+\gamma$.

On p. 8 the statement is made that the only previous tabulation of this form known to the authors extends over a smaller range and gives only the value of a real root. Apparently the authors are unaware of the fact that in H. E. Salzer, C. H. Richards \& I. Arsham, Table for the Solution of Cubic Equations, McGrawHill, New York, 1958, there are similar tables for obtaining all three roots, as functions of an argument $\theta=1 / A$ corresponding to the complete range of A.

Herbert E. Salzer

1. J. A. Ward, "The down-hill method of solving $f(z)=0$," J. Assoc. Comput. Mach., v. 4, 1957, pp. 148-150.

120[I].-D. S. Mitrinović \& R. S. Mitrinović, Tableaux d'une classe de nombres reliés aux nombres de Stirling, (a) IV: Belgrade, Mat. Inst., Posebna izdanja, Knjiga 4 (Editions spéciales, 4), 1964, 115 pp., $24 \mathrm{~cm} .,(\mathrm{b}) \mathrm{V}:$ Publ. Fac. Elect. Univ. Belgrade (Série: Math. et Phys.), No. 132, 1965, 22 pp., 24 cm.

The first three installments of these tables were reviewed in Math. Comp., v. 17, 1963, p. 311 and v. 19, 1965, pp. 151-152 (in the latter review, for ${ }^{p} P_{n}{ }^{+}$, read ${ }^{p} P_{n}{ }^{r}$ in two places, for x^{+}, read x^{r}, and for Instituto, read Istituto).

